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Abstract Transient electromagnetic (TEM) can conduct efficient large-scale geological surveys on the
near-surface. Exploring fast and comprehensive interpretation strategies for electromagnetic data is crucial for
geoscientists to make high-quality decisions on site. In this study, we proposed a probabilistic neural network
(PNN) structure to estimate the posterior probability density function (PDF) of model parameters. The feature of
this structure is that it uses noisy data and the data standard deviation information as inputs of the training data
set, and the model parameters retrieved through deterministic inversion are used as labels. Such a structure
enables the posterior PDF output by the PNN to take into account the uncertainty information of the input data
itself, and allows us to add existing field data to the training data set to continuously enrich reasonable prior
information. Additionally, we aim to extract useful information from the posterior PDF, including smooth
models similar to those obtained through laterally or spatially constrained inversion, as well as the estimation of
the depth of investigation of the imaging results. The PNN structure was verified using 200 km of waterborne
TEM survey data. The results shows that the PNN network efficiently delineated the subsurface electrical
property distribution of a large-scale lake water system, and the lake depth and depth-uncertainty extracted from
the imaging results demonstrated good consistency with the sonar bathymetric data. Besides, the smooth model
extracted from the resistivity posterior PDF estimated by PNN not only improves the smoothness of the model
but also reduces the data misfit.

Plain Language Summary Due to the nonunique solution and noise interference in geophysical
electromagnetic data, there are multiple interpretation results for the electromagnetic response data.
Probabilistic neural networks (PNNs), such as mixture density networks (MDN5s), can predict the posterior
distribution of the model and have unique advantages in solving the non-unique inversion problem. However,
how to obtain a representative posterior distribution while considering the existence of the uncertainty of the
data itself remains a major challenge. To address this issue, we have designed a PNN structure that can provide
Bayesian probabilistic imaging results and employ traditional deterministic inversion to construct the training
data set. This training strategy takes into account the uncertainty inherent in the data and allows for the
subsequent addition of field-measured data to enrich the training data set. We also discussed how to utilize the
obtained posterior distribution to estimate useful information, including extracting a smooth model analogous to
the results of laterally constrained inversion and estimating the depth of investigation, both of which can provide
rapid decision-making support for field crews. The PNN structure successfully estimated the electrical
parameters of a large-scale lake groundwater system within tens of seconds.

1. Introduction

As mobile electromagnetic detection technologies such as airborne transient electromagnetics (ATEM) (Chandra
et al., 2021; Silvestri et al., 2019), ground-towed transient electromagnetics (Auken et al., 2019), and waterborne
transient electromagnetics (FloaTEM) (Maurya, Christensen, et al., 2022) have matured, transient electromag-
netic (TEM) methods are now able to conduct high-efficiency, large-scale geological surveys across terrestrial,
lacustrine, and aerial environments. For instance, the tTEM technology facilitates mobile geological surveys
using all-terrain vehicles or boats, offering a mobility similar to ATEM counterparts. The tTEM system operates
at speeds up to 20 km per hour (Grombacher et al., 2021), enabling efficient and cost-effective geological surveys
over extensive areas, with a typical depth of investigation (DOI) ranging from 80 to 100 m. Due to its smaller
footprint and increased data acquisition density, the tTEM offers superior horizontal and vertical resolution in
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shallow subsurface detection, particularly within the first 20 m (Maurya et al., 2023), compared to the ATEM
method. Currently, electromagnetic exploration technology has successfully been implemented in large-scale
geological surveys for applications including mapping of groundwater hydrology systems (Grombacher
et al., 2021), assessing groundwater vulnerability (Sandersen et al., 2021), and probing deep geothermal fluids
(Finn et al., 2022).

When conducting large-scale survey work, obtaining rapid and comprehensive inversion interpretation results is
crucial for enabling geophysical engineers to accurately assess geological features and make informed decisions.
In the existing interpretation methods, TEM still primarily relies on smooth constrained deterministic inversion
(including laterally or spatially constrained inversion (Auken et al., 2008)) based on one-dimensional (1D)
forward operators to provide fast interpretation (Maurya, Grombacher, et al., 2022). The smooth constrained
inversion method uses neighboring measurement points as constraints and generally provides better quality than
conventional single-point inversion methods (Viezzoli et al., 2009). For deterministic inversion methods, the
Jacobian matrix can be employed in conjunction with the model covariance matrix to estimate the uncertainty of
the current model parameters (Fiandaca et al., 2013). However, the presence of data noise, model nonlinearities,
and inherent imperfections leads to the existence of an infinite number of models capable of fitting the observed
data (Chen et al., 2021; Xue et al., 2020). Consequently, deterministic inversion approaches are generally unable
to properly account for such uncertainties (Hansen & Finlay, 2022; Zaru et al., 2024). In contrast, Bayesian
inversion methods based on Markov chain Monte Carlo (MCMC) sampling provide a more robust approach to
uncertainty estimation. By generating a large number of models that fit the observed data, Bayesian inversion
enables the computation of a posterior probability density function (PDF) of resistivity and has been widely
adopted in the inversion of geophysical electromagnetic data (Blatter et al., 2018; Chen et al., 2022a; Killingbeck
et al., 2020). Nevertheless, the computational cost of such sampling-based methods is substantial due to the
extensive sampling required, making them time-intensive. To address this issue, Hansen (2021) proposed an
extended rejection sampler strategy, which involves utilizing a pre-calculated lookup tables to estimate the
posterior PDF of frequency domain airborne electromagnetic data. This strategy eliminates the need for additional
forward modeling computations compared to traditional Bayesian inversion, thereby significantly improving
computational efficiency. However, for large-scale electromagnetic data sets, achieving near real-time model
uncertainty analysis in field applications remains a significant challenge.

In recent years, numerous studies have demonstrated the feasibility of deep learning algorithms for real-time
imaging of TEM data, including work by Colombo et al. (2021), Puzyrev (2019), Puzyrev et al. (2021), Shi
and Cao (2022), Li et al. (2022), Wu et al. (2021a, 2021b), Chen et al. (2022b), and Asif et al. (2022). These
studies principally leverage deep neural network (DNN) frameworks to either establish a specific mapping be-
tween TEM data and resistivity parameters or learn partial derivatives to speed up the inversion process. This type
of single-output DNN is capable of rapidly generating model parameters akin to those derived from deterministic
inversion. However, the above studies did not provide estimates of uncertainties since for each input data vector
their neural networks only predict single-output model parameters vector. Additionally, the inherent nonunique
mapping relationships within the constructed geophysical training data set present significant challenges for
training single-output DNN networks.

Given these training challenges and the impact on the reliability of deep learning networks in interpreting TEM
data, probabilistic neural networks (PNNs) have emerged as an effective solution for addressing the nonlinear
inversion problems encountered in geophysics. Devilee et al. (1999) were among the early researchers to utilize
PNNss for the inversion of seismic wave velocities, successfully producing a maximum-likelihood map of crustal
thickness across Eurasia. One of the classical structures within PNNs is the Mixture Density Network (MDN).
MDNSs leverage the capability to map an input vector to an n-dimensional conditional probability distribution,
parameterizing this distribution as a Gaussian mixture model (GMM) to learn and model arbitrary probability
distributions. Earp and Curtis (2020) employed a MDN to perform a two-dimensional Bayesian seismic travel
time tomography, demonstrating that the prior information used to construct the training data set is crucial for the
quality of network training. Mosher, Eilon, et al. (2021) and Mosher, Audet, and Gosselin (2021) further applied
this method to the inversion of shear wave velocity structures in marine seismology, showing that MDN inversion
is consistent with traditional MCMC inversion techniques, which facilitates the standardization of geophysical
inversions. Additionally, MDNs have exhibited excellent performance in the inversion of electromagnetic data
(Yu et al., 2024), surface wave dispersion data (Earp et al., 2020) and geoacoustic data (Wu et al., 2021e).
However, the training of MDN networks can be unstable in high-dimensional problems, which may lead to
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suboptimal performance in multimodal predictions (Earp & Curtis, 2020; Zhang & Curtis, 2021). To address this
issue, Alyaev and Elsheikh (2022) adopted the Multiple-Trajectory-Prediction (MTP) strategy to improve the
design of the MDN loss function, effectively avoiding mode collapse.

Another typical PNN is the Invertible Neural Network (INN). INN structures are designed to perform bidirec-
tional mapping between inputs and outputs, estimating the posterior probability density function (PDF) through
the introduction of latent variables on the output side, which is crucial for accurate Bayesian inference (Ardizzone
et al., 2018). Zhang and Curtis (2021) compared the performance of INNs, MDNSs, and traditional MCMC
methods in estimating one-dimensional surface wave dispersion inversion and two-dimensional travel time to-
mography. Their results indicated that INN networks have a significant advantage in inferring the correlations
between model parameters. Wu et al. (2023) applied the INN method to the Bayesian inversion of electromagnetic
data, demonstrating that INN methods can obtain marginal distributions similar to those derived from MCMC
methods. However, since not all types of layers can be designed to be invertible, INN networks typically require
specific designs, which can limit their flexibility. Moreover, compared to MDN networks, INN networks have
higher memory requirements and training costs, making them less feasible for very high-dimensional problems
such as full waveform electromagnetic or seismic inversion (Zhang & Curtis, 2021). With the diversification of
neural network architectures, many new neural network frameworks have been applied in geophysical proba-
bilistic inversion. For instance, Li et al. (2024) utilized Variational Physics-Informed Neural Networks via
Variational Inference for seismic petrophysical inversion. Jiang et al. (2025) combined Transformer models with
semi-supervised training strategies to achieve joint inversion and uncertainty estimation of surface waves and
receiver functions.

Overall, geophysical probabilistic inversion based on deep learning networks has developed rapidly in recent
years, and the importance of assessing the uncertainty of inversion parameters has become widely recognized.
However, in the aforementioned studies, more attention has been focused on evaluating whether the posterior
PDFs obtained by deep learning networks are representative, with few studies exploring how to extract more
valuable information from these posterior PDFs. In actual field work, the direct guidance value of quickly ob-
tained posterior PDFs of model parameters remains limited, especially for on-site personnel who are not experts
in this field.

This study focuses on the interpretation needs of large-scale electromagnetic survey data, specifically investi-
gating whether more valuable inversion information can be extracted from the outputs of PNNs and whether
existing large-scale data sets can be effectively integrated into training data sets to enrich prior geological in-
formation. The MDN can directly predict the posterior PDFs of model parameters, which is beneficial for post-
processing. Therefore, this paper designs a Bayesian imaging structure for large-scale electromagnetic data based
on the MDN framework. We propose a training data set construction framework that enables us to incorporate
existing actual electromagnetic data sets and their inversion models into the training data set. Moreover, we
successfully extracted smooth constraint models from the obtained posterior PDFs of resistivity, which are
particularly useful in geological systems with good geological continuity. By using the divergence between the
posterior PDF and prior knowledge, we can also estimate the DOI of model parameters. Finally, we discuss the
impact of adding field measured data and the number of mixed Gaussian kernels on network training
performance.

2. Method
2.1. Data Generation

As shown in Figure 1, the Bayesian imaging framework based on the PNN mainly includes three stages: data
generation, network construction and training, and imaging result output.

In the data generation stage, the training data set needs to be designed specifically. For electromagnetic data
inversion, the uncertainty of model parameters is mainly composed of the noise existing in the observation data,
the non-uniqueness of the inversion, and imperfections such as modeling errors caused by using a 1D layered
earth approximation (Bai et al., 2021; Deleersnyder et al., 2024). While modeling errors can be mitigated through
three-dimensional forward simulations, the 1D approximation remains the preferred approach in both industry
and academia due to its computational efficiency (Zaru et al., 2024). Thus, in this study, we still use 1D forward
modeling for data set construction. Traditional inversion training data sets typically utilize forward modeling data
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Figure 1. Diagram of the probabilistic neural network (PNN) and the single-output deep neural network (DNN) structures. Both architectures employ transient
electromagnetic data and corresponding standard deviation values as input. The target labels are deterministic inversion resistivity models generated using the
EEMverter platform (Fiandaca et al., 2024). The DNN outputs the predicted resistivity model, whereas the PNN outputs the mixture density network-derived posterior
resistivity distribution function, from which the maximum probability, mean, stochastic, and smooth models are readily derived.

as input and theoretical resistivity models as training labels. Since there are no errors in the data or labels in this
kind of training data set, the model uncertainty obtained after training mainly reflects the non-uniqueness of the
model, and it is difficult to well reflect the uncertainty caused by data noise. In this research, we utilize both the
forward modeling noisy data and the data standard deviation (STD, see Equation 4) information as joint inputs,
with the geological models obtained through deterministic inversion serving as training labels.

The specific difference lies in the fact that the construction of typical data sets only requires generating resistivity
models and performing forward modeling. In contrast, our data set construction method involves four steps: (a)
generating resistivity models and performing forward modeling to obtain noiseless response data; (b) adding
noise according to the method described in Section 2.3 and calculating the STD of the data; (c) performing
deterministic inversion to obtain inversion model parameters and recording the inversion misfit; (d) using the
model parameters with an inversion misfit below the set threshold (a misfit threshold of 1 is used in this study) as
the output labels of the training data set, while the corresponding noisy data and STD information are used as the
input of the training data set.

d N d wr,i
Misfit = Z ((S"‘;D d’; )) (1)

Where d, is the field data, d,, is the forward data, and N is the number of data time gates. A data misfit near 1
means that the forward data can fit the field data within the errorbar. This data set construction method is more
time-consuming than the traditional approach. However, the advantage is that the training labels, which are the
model parameters obtained from deterministic inversion, take into account the STD information inherent in the
input data. This facilitates the transmission of data uncertainty information to the posterior PDF. Additionally, this
data set construction method closely mimics the inversion process of real-world field data, thus allowing us to
continuously add field-measured data to enrich the prior information of the training data set.

During the generation of random resistivity models, we set the number of layers for the forward modeling to a
fixed 30 layers, with the layer thickness increasing logarithmically over a range of 120 m. The last layer is
assumed to be a semi-infinite half-space, thus we only need to define the resistivity values for these 30 layers.
Prior information consistent with geological knowledge is very important for a good estimate of the posterior PDF
in probabilistic inversion (Hansen & Minsley, 2019). Considering that the electromagnetic instrument system
(tTEM and FloaTEM) is primarily applied in hydrogeological surveys, where the range of resistivity variations is
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wide and the model labels in the training data set will be derived from regularized deterministic inversion, we
imposed implicit prior knowledge in the form of smoothness constraints during model generation. This means that
the resistivity parameters of the 30 randomly generated layers vary smoothly along the depth direction. The model
resistivity range is from 0.1 Q-m (such as seawater or saline water) to 10,000 Q-m (such as rock). We refer to the
smooth model generation strategy proposed by Wu et al. (2021d), which mainly includes the following steps:
First, 2—4 anomalous layer positions are randomly selected within the 30-layer subsurface space (i.e., within
120 m below the surface), ensuring a minimum separation of 15 m between any two anomalous layers. Second,
random values of logarithmic resistivity between —1 and 4 are assigned to these anomalous positions. For the
resistivity values of the remaining layers, a smooth model along the depth direction is obtained using cubic spline
interpolation based on the resistivity values of the anomalous layers.

This study's training data set comprises a forward modeling data set (405,000 sets of data) and a field-measured
data set (15,000 sets of data). The inputs in the field-measured data set are the field data and its corresponding
STD, and the labels are the corresponding deterministic inversion models (data with inversion misfit greater than
the set threshold are removed). We did not specially design the proportion of field data/models in the training data
set, as the amount of field data is always more limited compared to synthetic data, and the field-measured data
added here does not include the FloaTEM data used for subsequent testing. We will discuss the potential benefits
of adding field measured data in Section 4.

2.2. Network Construction

In the stage of network construction and training, considering that the TEM data used for inversion processing is
sparsified by gate integration (Neven et al., 2021), and there exists a complex non-unique mapping relationship
between the input data and the output resistivity model, we hope to design a network that can extract the high-
dimensional features of the TEM data before entering the MDN Bayesian-Net, so as to accurately evaluate the
uncertainty of the resistivity parameters. Based on the time decay characteristics of TEM data and the superior
performance of long short-term memory (LSTM) in processing time series data (Wu et al., 2021c), this study
adopts an upscaling architecture to design LSTM-Net. The output of LSTM-Net is directly combined with the
subsequent MDN Bayesian-Net. To facilitate subsequent comparison, we designed a single-output DNN imaging
network using a structure consistent with the PNN predicted mean output. The difference between MDN and
single-output DNN is that MDN outputs a resistivity distribution function, while DNN outputs direct resistivity
parameters. This characteristic allows MDN to model arbitrary distributions via GMM, offering flexibility in
accommodating the varied shapes of posterior distributions that can arise from the data. The number of Gaussian
kernels directly influences the complexity of the parameters predicted by the MDN. In this study, we set the
number of Gaussian kernels to 3. Section 4 will discuss the impact of different numbers of Gaussian kernels on the
training performance of the MDN network.

Suppose we have N training data sets R = {(d;, m;): i =1, ..., N}, where d and m represent the input space of TEM
data and the output space of resistivity model parameters, respectively. Given an input d,, if the trained resistivity
model set m; satisfies a prior PDF distribution, the structure of a conventional neural network will output the
corresponding m; by minimizing the sum of squared errors on the set R. This output result will approximate the
mean solution of the Bayesian posterior distribution p(ml d) (Earp et al., 2020). In contrast, MDN can directly
output an estimate of the Bayesian posterior distribution p(ml d). For details on MDN principle and loss function
design, see Text S1 in Supporting Information S1.

2.3. Noisy Data Generation and Definition of STD

EEMverter (Fiandaca et al., 2024) was utilized for forward calculations on the resistivity model to obtain elec-
tromagnetic response data. For the synthetic data obtained by forward modeling, we need to add noise to it and
define STD. Referring to the work of Vignoli et al. (2015) and Auken et al. (2008) the perturbed data can be
expressed as:

STD?

272
Voois
- ( HOlSC)

Viep = V + G(0,1) V. 2)
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Where V., is the noisy data, V is the forward modeling noiseless data, G(0,1) is a zero-mean Gaussian distri-
bution with STD 1, STD,,,; is uniform noise STD and its value is set to 0.03 (i.e., relative percent deviation), which
is consistent with the default benchmark STD value of the tTEM/FloaTEM instrument. V, ;.. is the background
noise contribution. If the surrounding noise is white (i.e., random and uniformly distributed across all fre-
quencies), applying logarithmic gating leads to an average noise reduction that is proportional to £~/ (Munkholm

et al., 1996). We can write V, ;. as

L
Vioise = b~ (W) : 3)

Where ¢ is gate time, b is the noise level at 1 ms and its value is set to 1 nV/m? according to the experience from
Auken et al. (2008). The STD of the synthetic data is defined as:

Vo T
STD = |STD;,; + <—““;Se) ] 4)

After obtaining the STD of the forward modeling data, we applied the EEMverter software for resistivity
inversion of both synthetic and field measured data. During the inversion process, the STD of the data was taken
into account, and a constraint term was applied along the depth direction (with a constraint factor set to three,
meaning that a penalty would be imposed if the resistivity change between adjacent layers exceeded threefold).
This ensures that the inversion results exhibit relatively smooth variations with depth, which is consistent with our
prior knowledge in constructing the resistivity model. The inversion objective function is as follows:

_ 1 & (dobs.i - dforwardz (m z+l)
Qinv - [Nd +Nm _ 1(2 (STD, 'dobs,i)z ) Z (5)

i=1

Where N, is number of time gates, N,, is number of layers, d, is the target data to be inverted, di; v qrq 1S the
forward modeling data, m is the inversion parameter, and o, is the constraint STD in the vertical direction of the
model. Ultimately, the TEM data, the data STD, and the resistivity models obtained from inversion are each
subjected to logarithmic transformation and normalization. The normalized data are combined with the STD to
form the input data set, while the inverted models are utilized as training labels, thus completing the construction
of the training set. The settings of training parameters are shown in Text S2 and Table S1 in Supporting
Information S1.

3. Data and Results
3.1. Data

The PNN inversion was tested through a large-scale FloaTEM survey conducted on the south shore of lake Iseo in
Italy (see Figure 2), aimed at studying lake-groundwater interaction. This involved a waterborne tTEM survey
spanning approximately 200 km with nearly 35,000 survey points. Furthermore, to measure bathymetry accu-
rately, both a sonar sounding device and a GPS device were installed on the boat. Figure 2 illustrates the quality of
the FloaTEM survey line data, which we briefly processed to align the data time gates with the PNN training data
set. Notably, the data quality is high and the STD is minimal in areas away from the shore. Figure S1 in Sup-
porting Information S1 depicts the data quality near the shore, where it notably degrades. Increased STD in the
late time gate data is attributed to interference from nearby human-made structures and power lines. Additionally,
significant local changes in data amplitude are observed. This is linked to the lakeshore's geological connections
with adjacent mountains. Rocks extending from these mountains into the lake bed introduce high-resistance
anomalies, attenuating the electromagnetic response.

3.2. PNN Inversion Reveals the Interaction Between Lake Water and Groundwater

The inversion results of the PNN network were compared with those obtained from the laterally constrained
inversion based on the EEMverter modeling platform (Fiandaca et al., 2024). The number of inversion layers and
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Figure 2. The distribution of waterborne transient electromagnetics survey lines of the survey carried out on the south shore
of the lake Iseo, together with an image of the acquisition and a map of the lake.

layer thicknesses were consistent with the training parameters of the deep learning model. The number of
inversion layers and layer thickness is consistent with the deep learning training parameters. The MDN-Net, in
contrast to the DNN-Net that delivers direct resistivity values, outputs the posterior resistivity PDFs of each layer.
In the subsequent comparative analysis of inversion presented this section, we use the maximum probability (MP)
value model extracted from the PDF as the representative model for discussion.

The left panel of Figure 3 compares the inversion results of the deterministic inversion, DNN imaging, and MDN
MP value imaging. The inversion model reveals some intriguing subsurface characteristics in the lake area, as
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Figure 3. Waterborne transient electromagnetics data inversion and misfit analysis for lake Iseo. From top to bottom: (a) Deterministic inversion results using
EEMUverter; (b) deep neural network imaging results; (c) Maximum probability value from mixture density network output. The white grid in the figure is the bathymetry
information of the lake. For enhanced clarity in visual representation, (a), (b), and (c) are presented with consistent X and Y scales, while the Z scale is expanded tenfold.

delineated by the black dashed lines. First, there are zones of high-resistance anomalies underlying the western
and far eastern regions, indicating the presence of rocks extending from the surrounding mountains into the lake.
Second, the southern region exhibits anomalies around 100 Q-meters, representing discontinuous aquifers
beneath the lakebed that directly connect with deeper groundwater in some areas. All three methods exhibit good
overall consistency in imaging characteristics; however, the deterministic inversion results are generally
smoother. This smoothness is attributed to the laterally constrained inversion, which can spread the model in-
formation detected at adjacent measurement points, thereby improving the continuity of the model and enhancing
the resolution of weakly resolved parameters. Although the trained neural networks can quickly predict model
parameters for large-scale data sets, their output results are relatively independent and do not consider the
geological correlations between data. Consequently, both single-output DNN and MDN imaging results show
significant roughness. Notably, compared with DNN imaging, the MDN imaging results are more closely aligned
with the deterministic inversion in some details, such as areas with discontinuous groundwater features.

An important parameter to evaluate the quality of the inversion model is the misfit between the forward response
of the inversion model and actual field data. The right panel of Figure 3 shows the misfit calculation results
corresponding to the three inversion models. The misfit values for the EEMverter inversion model are generally
low, with only some larger misfit values appearing in the regions near the lakeshores. In comparison, the misfit
values for the DNN and MDN models are notably higher than those for the EEMverter model, but the misfit
values in most areas are less than 1, indicating that both predictive models are reliable. The regions with high
misfit values for both the DNN and MDN models exhibit similar distributions, primarily concentrating along the
lakeshores of the survey area. As shown in Figure S1 in Supporting Information S1, these areas are close to
residential zones, where the data are seriously disturbed by noise.

Figure 4 presents the overall distribution of the subaqueous clay layers extracted from the inversion results. Both
the deep learning inversion and EEMverter inversion revealed the existence of two layers of low-resistivity clay
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Figure 4. Distribution of the subaqueous clay layers extracted from the inversion results. From top to bottom: (a) Deterministic inversion results using EEMverter;
(b) deep neural network imaging results; (c) Maximum probability value from mixture density network output. The gray grid in the figure is the bathymetry information
of the lake. For enhanced clarity in visual representation, (a), (b), and (c) are presented with consistent X and Y scales, while the Z scale is expanded tenfold.

underground. The first layer of clay exhibits good continuity, situated between the lake water and aquifer,
basically coinciding with the sonar bathymetry. It effectively prevents the lake water from percolating down into
the aquifer, thereby protecting the aquifer from direct contamination by surface pollutants. The second clay layer,
located at the bottom of the aquifer beneath the lake, is discontinuously distributed. This corroborates the
localized connectivity between the sub-lake aquifer and deeper groundwater systems. However, as can be clearly
observed from the comparative results on the right side of Figure 4, there are localized discrepancies between the
clay layer distribution extracted by the DNN model and the sonar bathymetry results. These discrepancies are
manifested in the central region where sonar bathymetry data is missing (due to water depth exceeding the sonar's
measurement limit), while the DNN model locally displays unreasonable clay layer representations. Both the
EEMverter inversion results and the MP model of MDN demonstrate good agreement with the sonar bathymetry
results. This substantiates that the MDN network slightly outperforms the single-output DNN network in handling
non-unique geophysical inversion problems.

Additionally, Figures 5a—5c present a comparison between lake depth data extracted from three inversion results
and sonar-detected bathymetric data. The extraction strategy details are provided in Text S3 in Supporting In-
formation S1. The lake water depths derived from the inversions are observed to closely approximate the
bathymetric values, showing a significant positive correlation. To ensure a fair comparison, the Pearson corre-
lation between the overlapping water depth points extracted by the three types of inversions and the bathymetric
data was calculated. This approach mitigated the potential biases associated with varying extraction methodol-
ogies. The correlation coefficients for all three sets of extraction outcomes exceeded 0.95, underscoring the
reliability of leveraging inversion results for the delineation of lake water depth features. Notably, the correlation
results for MDN and EEMverter were remarkably close, achieving a high correlation coefficient of 0.98, out-
performing the DNN result of 0.96. Figure 5d presents the credible distribution range of lake water depth derived
from the posterior PDF of resistivity output by the MDN. The results demonstrate that the uncertainty in water
depth extraction is relatively lower in shallow water regions compared to deeper areas, which is consistent with
the law that the resolution of TEM method gradually decreases from shallow to deep. Furthermore, the process of
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Figure 5. Lake depths extracted from (a) EEMverter, (b) deep neural network, and (c) mixture density network (MDN)
imaging models are compared with sonar bathymetry data and Pearson correlation coefficients are calculated. (d) 68%
credible interval of lake depth inferred from resistivity distribution output by MDN.

interpreting geophysical observation data to estimate the uncertainty of lake water depth represents a critical
transition from geophysical data analysis to practical engineering applications. The ability to rapidly obtain large-
scale predictions of lake water depth, along with their associated uncertainties, provides valuable insights for
hydrogeological management of lake systems and facilitates timely disaster early warning. The PNN approach
can greatly accelerate the decision-making process for environmental monitoring and risk assessment. Despite the
inevitable errors in extracted water depths from inversions, these results still demonstrate the good imaging
accuracy of the PNN. The PNN takes about 36 s to invert Iseo data in the laptop, while the EEMverter inversion
based on the server platform takes approximately 6,500 s. The configuration parameters of the laptop and server
are given in Text S2 in the Supporting Information S1.

3.3. Extract Smooth Model

As analyzed in Section 3.2, when neural networks generate large-scale predictive models, the outputs are in-
dependent and do not consider the continuity of models corresponding to adjacent geological observations. This
results in the models produced by neural networks often being rougher compared to those generated by traditional
inversion methods. In this study, the MDN-Net obtained the posterior PDF of the resistivity for each layer,
allowing for the estimation of the possible range of layer resistivity through distribution parameters. In this
context, we can easily extract thousands of possible models from these distribution functions. Then, the question
arises: For lake systems with strong continuity characteristics of geological parameter distribution, is it possible to
extract a smooth model that is more in line with geological characteristics, and to quickly obtain models similar to
those of laterally constrained inversions (Auken et al., 2008; Viezzoli et al., 2009)? The answer is affirmative. By
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Figure 6. Comparison of posterior model credible intervals between mixture density network (MDN) prediction and Markov
chain Monte Carlo (MCMC) inversion at the 800th and 7,004th survey soundings. (a) MDN results; (b) Trans-dimensional
MCMC results.

searching for models within the potential distribution range of resistivities, and using an optimization algorithm
that identifies models with similar adjacent resistivities, we can readily obtain smooth models. This strategy offers
a high degree of flexibility, and we can even design sharp constraints (Vignoli et al., 2015) to search for models
that are smooth locally (Chen et al., 2023). In this respect, it is paramount to verify the reliability of the resistivity
distribution functions obtained by the PNN and to ensure the credibility of any model extracted therein. In a prior
research work we were involved in, the reliability of the resistivity distribution function under the mixture
Gaussian model has been confirmed through simulations and field cases (Yu et al., 2024). In this study, we first
compared the posterior 95% credible intervals of resistivity predicted by the MDN with the credible intervals
obtained by classical MCMC sampling. We adopted the trans-dimensional MCMC inversion strategy proposed
by Blatter et al. (2018), using three Markov chains, each sampling 200,000 times, with a burn-in period of 5,000
samples. We used the same laptop computer and the MCMC inversion took about 6 hr per sounding.

Figure 6 shows the comparison results of two random survey points in lake Iseo. The red lines in the figure show
the 95% credible interval distribution while the green lines indicate the deterministic inversion results from
EEMverter. The comparative results demonstrate that the 95% credible intervals of the posterior models obtained
from both the MDN and MCMC methods exhibit consistency across two sounding points (Soundings 800 and
7004). Observations from the results highlight that in shallower depths, the 95% credible interval tends to be
narrower for both the MDN and MCMC approaches, indicating higher model certitude and lesser uncertainty.
However, with the increase in depth, the uncertainty manifests itself by demonstrating the broadened credible
interval widths, suggesting greater uncertainty and complexity in estimating the resistivity in deeper layers.
Furthermore, the MDN method exhibits a more smooth output for the posterior PDF than the MCMC method
when deriving the posterior distribution. This smoother output could be attributed to the MDN's capability of
incorporating and learning the prior knowledge of smooth variations in resistivity from the training data set,
resulting in a posterior PDF with more gradual and smooth changes in resistivity high probability density regions
with depth progression.

We extracted 100 sets of observational data from lake Iseo, calculated the mean and STD from the mixture of
Gaussian functions using the law of total variance, randomly sampled 50 models within the one-sigma range of
the distribution function, and computed the average misfit between the forward modeling data and the obser-
vational data for all models. Figure 7 presents a comparative analysis of the average misfit between the MDN
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Figure 7. Evaluation of the reliability of resistivity probability density function using 100 random data sets from lake Iseo.

random models and the inversion misfits of EEMverter, DNN, and MDN-MP models. Notably, the average misfit
of the random sampling model is significantly inferior to that of the MDN-MP solution, with the majority of errors
ranging between 1.5 and 2. Given that this model is randomly sampled from a 30-layer resistivity distribution
function, such errors are reasonable due to the inherent roughness and randomness between models. In scenarios
where additional geological prior knowledge is unavailable, mobile electromagnetic detection systems with large-
scale, high-density acquisition often exhibit smooth geological variations in adjacent data. Consequently, iden-
tifying smooth models from the posterior distribution of MDN may enhance the overall imaging resolution.
Figures 8a and 8b illustrate the results of smooth models extracted from the MDN posterior PDFs generated from
two sets of lake Iseo survey line data. Compared to the MDN-MP and DNN imaging models, the MDN smooth
models significantly enhance the smoothness of the imaging results, producing models that closely resemble
those obtained from EEMverter deterministic laterally constrained inversion. This makes imaging models more
representative in hydrogeological environments with good continuity. Furthermore, Figures 8c and 8d present the
misfit between the forward responses of different models and the observed data. It is evident that the smooth
model significantly enhances the quality of data fitting compared to the MDN-MP model, with the average misfit
for the two survey lines decreasing by 24.8% and 22.2%, respectively. This demonstrates that extracting models
from the posterior PDF that align with prior geological knowledge not only improves model resolution but also
enhances the model reliability. In fact, you can also design a special regularization function to extract a model that
meets the model constraints from the posterior resistivity distribution. These results provide a practical approach
for leveraging deep learning techniques to rapidly achieve constrained geophysical inversion.

3.4. Estimate of Depth of Investigation

The DOI is a critical parameter for evaluating the reliability of inversion models at different depth ranges.
Building upon the global DOI concept defined by Christiansen and Auken (2012) and the method of estimating
the DOI of inversion models using Kullback—Leibler (KL) divergence proposed by Blatter et al. (2018),we
provide a deep learning-based DOI estimation strategy leveraging resistivity distribution functions obtained from
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Figure 8. Comparison of the smooth model extracted by MDN-Net with the model obtained by EEMverter inversion and the MDN-MP model. Left column from top to
bottom: (a) Inversion models corresponding to the 4,310—4,360th survey point data of lake Iseo and their corresponding (c) misfit comparison. Right column from top to
bottom: (b) Inversion models corresponding to the 17,780—17,830th survey point data of lake Iseo and their corresponding (d) misfit comparison. The white dots in the
model diagram represent sonar bathymetric data.

the MDN. Essentially, our strategy involves computing the global cumulative sensitivity by analyzing the KL
divergence information of the resistivity posterior PDF. The KL divergence quantifies the difference between two
probability distributions, where a higher divergence value indicates that the posterior distribution has extracted
substantial information from the data, signifying higher sensitivity in identifying the resistivity of that layer.
Consequently, this allows us to compute the cumulative sensitivity from deeper to shallower regions. We then
establish a sensitivity threshold, which represents the minimum sensitivity required to produce a meaningful
impact on the observed data. When the calculated cumulative sensitivity exceeds this threshold, the corresponding
depth is designated as the DOI for the deep learning-based inversion. For details, see Text S4 in Supporting
Information S1.
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Figure 9. Estimation of depth of investigation (DOI). (a) DOI estimation from EEMverter inversion, (b) DOI estimation from
probabilistic neural network using cumulative Kullback—Leibler divergence.

Figure 9 illustrates the comparative analysis of the DOI region as determined by EEMverter inversion and the
DOI region identified by the PNN network. This comparison reveals that, under suitable threshold conditions,
there is a good agreement between the DOI region delineated by the PNN and that identified through classical
inversion techniques. Moreover, conventional DOI estimation strategies are directly related to model parameters.
Affected by the non-uniqueness of inversion, different models that can satisfy data fitting may cause fluctuations
in DOI (Blatter et al., 2018), while cumulative KL divergence uses the resistivity posterior PDF for estimation,
and its estimation results are applicable to any model extracted from this distribution. The described method
provides a feasible strategy for DOI estimation based on geophysical data inversion that utilizes deep learning
techniques.

4. Discussions

In this study, the training data set construction framework allows us to add field data, but whether adding field
data will improve the performance of the MDN network remains to be evaluated. To this end, we designed a
comparative experiment to assess the network's performance under three different data sets. Dataset-a consists
exclusively of synthetic data, Dataset-b is the same as the training set used in the previous section of this paper,
with 15,000 sets of field data added (excluding the data from lake Iseo), and Dataset-c further incorporates 3,000
sets of field data from lake Iseo (approximately 8.57% of the total data from lake Iseo). The training parameters
for these three data sets are identical, specifics are provided in Table S1 of Supporting Information S1.

Figure 10 shows the comparison of the misfit of the MDN-MP model output on the Iseo data and the posterior
PDF of the two soundings (same sounds in Figure 6) under three training data sets. The posterior PDF features of
the two soundings exhibit similarity across the three training data sets, while the output misfit distributions shows
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Figure 10. Impact of training data sets with different compositions on the performance of the mixture density network. (a) Training data set composed solely of synthetic
data, (b) training data set composed of the data in set (a) with the addition of 15,000 sets of field data, (c) training data set composed of the data in set (b) with the addition
of 3,000 sets of field data collected at lake Iseo. Consistent with the way of constructing label models for synthetic data sets, the models corresponding to the field data
are all obtained by deterministic inversion.

obvious variability. Given that misfit is a critical parameter for evaluating the reliability of the MDN network
prediction model, we computed the mean misfit across all soundings for each model to provide a quantitative
basis for comparison. In Figure 10, the yellow dashed lines mark several areas along the lake shore where the data
are relatively more disturbed by noise. Compared with the purely synthetic data set, the model predicted by the
training set with field data added performs better in these areas, which may be related to the similarities between
the noise model contained in the added field data and the noise pattern on the lake shore. Overall, the average
misfit decreases from 1.039 to 0.938 after adding field data, representing an improvement in data fitting quality by
approximately 10.77%. Figure 10c shows the network performance after adding some measured data from lake
Iseo. Since this method is equivalent to adding prior knowledge to the training set, it can significantly improve the
reliability of the MDN network prediction model. The overall misfit is further decreased from 0.938 to 0.823,
which means that the data fitting quality improved by 12.26%. These results suggest that incorporating filed data
into the training set can enhance the training quality of PNN, particularly in improving the reliability of prediction
models.

Furthermore, in Figure S2 of the Supporting Information S1, we discuss the impact of the number of Gaussian
kernels on the performance of the MDN. We compare the testing results of the MDN on the Iseo data set for
Gaussian kernel counts of 1, 3, 5, and 7. The comparative analysis reveals that while the MDN with a single
Gaussian kernel (i.e., a simple Gaussian distribution) also yields a relatively favorable average misfit value, the
utilization of a Gaussian mixture distribution allows for a more comprehensive description of the multimodal
characteristics inherent in the data. Within a certain range, an appropriate increase in the number of Gaussian
kernels enhances the reliability of the predictive model generated by the MDN. In our study case, when the
number of Gaussian kernels increased from 3 to 5, the testing performance of the MDN network for the prediction
model can be further improved, with the misfit decreasing from 0.938 to 0.849. However, as the number of
Gaussian kernels continues to increase, the misfit of the MDN network prediction model begins to rise, possibly
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due to the increased complexity of the neural network from the excessive number of Gaussian kernels, leading to
overfitting. The test results under different data sets and different numbers of Gaussian kernels show that although
changing the network parameters and training sets will affect the accuracy of the network prediction model, the
posterior PDF distribution characteristics of their predictions show relatively good robustness. This is important,
as it suggests that the MDN network has learned basic rules for evaluating model uncertainty from the training
data set. Consequently, we do not need to overly pursue perfect network training performance, because the
strategy proposed in this study for finding smooth models from the posterior distribution allows us to identify
models that are more consistent with geological knowledge from an imperfect prediction model, by setting
appropriate constraints. In this process, the correct information from geological knowledge is diffused in the
found model through the constraints, thereby improving the roughness and reliability of the model.

5. Conclusions

In this study, we proposed a PNN structure that can directly convert large-scale observational TEM data into a
resistivity model and estimate its posterior resistivity distribution. Through testing on the large-scale FloaTEM
data of lake Iseo in Italy, we discuss the feasibility of extracting a smooth model from the posterior PDF predicted
by the PNN and estimating the DOI of the prediction model by calculating the cumulative KL divergence. Thanks
to the unique design of the inversion training data set, the PNN framework allows us to incorporate field data to
enrich the geological model library, thereby enhancing the quality of network training. In the discussion section,
we compare the network performance under different data sets. Adding field data to the training data set can
improve the reliability of the network's model prediction for data with strong noise interference. However, there
are still some limitations: on the one hand, the length of the input data of the current PNN structure is fixed, which
means that we still need to preprocess the field data to match the length of the training data set. On the other hand,
we have not yet considered the induced polarization phenomenon in the TEM data (Maurya, Grombacher,
et al., 2022) and the modeling error caused by 1D approximate (Bai et al., 2021; Deleersnyder et al., 2024). These
imitations will be the focus of future research efforts. Overall, compared with the single-output DNN network, the
PNN can rapidly provide a comprehensive inversion assessment for large-scale data, aiding geophysical engi-
neers in gaining a more thorough understanding of subterranean geological systems and in making informed
decisions.
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